973 research outputs found

    The role of tool geometry in process damped milling

    Get PDF
    The complex interaction between machining structural systems and the cutting process results in machining instability, so called chatter. In some milling scenarios, process damping is a useful phenomenon that can be exploited to mitigate chatter and hence improve productivity. In the present study, experiments are performed to evaluate the performance of process damped milling considering different tool geometries (edge radius, rake and relief angles and variable helix/pitch). The results clearly indicate that variable helix/pitch angles most significantly increase process damping performance. Additionally, increased cutting edge radius moderately improves process damping performance, while rake and relief angles have a smaller and closely coupled effect

    Numerical analysis and synthesis of 2D quasi-optical reflectors and beam waveguides based on an integral-equation approach with Nystrom's discretication

    Get PDF
    Cataloged from PDF version of article.Considered is the beam wave guidance and scattering by 2D quasi-optical reflectors modeling the components of beam waveguides. The incident field is taken as the complex-source-point field to simulate a finite-width beam generated by a small-aperture source. A numerical solution is obtained from the coupled singular integral equations (SIEs) for the surface currents on reflectors, discretized by using the recently introduced Nystrom-type quadrature formulas. This analysis is applied to study what effect the edge illumination has on the performance of a chain of confocal elliptic reflectors. We also develop a semianalytical approach for shaped reflector synthesis after a prescribed near-field pattern. Here a new point is the use of auxiliary SIEs of the same type as in the scattering analysis problem, however, for the gradient of the objective function. Sample results are presented for the synthesis of a reflector-type beam splitter. © 2007 Optical Society of Americ

    On the stability of high-speed milling with spindle speed variation

    Get PDF
    Spindle speed variation is a well-known technique to suppress regenerative machine tool vibrations, but it is usually considered to be effective only for low spindle speeds. In this paper, the effect of spindle speed variation is analyzed in the high-speed domain for spindle speeds corresponding to the first flip (period doubling) and to the first Hopf lobes. The optimal amplitudes and frequencies of the speed modulations are computed using the semidiscre- tization method. It is shown that period doubling chatter can effectively be suppressed by spindle speed variation, although, the technique is not effective for the quasiperiodic chatter above the Hopf lobe. The results are verified by cutting tests. Some special cases are also discussed where the practical behavior of the system differs from the predicted one in some ways. For these cases, it is pointed out that the concept of stability is understood on the scale of the principal period of the system—that is, the speed modulation period for variable spindle speed machining and the tooth passing period for constant spindle speed machining

    An experimental investigation of chatter effects on tool life

    Get PDF
    Tool wear is one of the most important considerations in machining operations as it affects surface quality and integrity, productivity and cost. The most commonly used model for tool life analysis is the one proposed by F.W. Taylor about a century ago. Although the extended form of this equation includes the effects of important cutting conditions on tool wear, tool life studies are mostly performed under stable cutting conditions where the effect of chatter vibrations are not considered. This paper presents an empirical attempt to understand tool life under vibratory cutting conditions. Tool wear data are collected in turning and milling on different work materials under stable and chatter conditions. The effects of cutting conditions as well as severity of chatter on tool life are analyzed. The results indicate significant reduction in tool life due to chatter as expected. They also show that the severity of chatter, and thus the vibration amplitude, strongly reduces the life of cutting tools. These results can be useful in evaluating the real cost of chatter by including the reduced tool life. They can also be useful in justifying the cost of chatter suppression and more rigid machining systems

    Compliance error compensation in robotic-based milling

    Get PDF
    The paper deals with the problem of compliance errors compensation in robotic-based milling. Contrary to previous works that assume that the forces/torques generated by the manufacturing process are constant, the interaction between the milling tool and the workpiece is modeled in details. It takes into account the tool geometry, the number of teeth, the feed rate, the spindle rotation speed and the properties of the material to be processed. Due to high level of the disturbing forces/torques, the developed compensation technique is based on the non-linear stiffness model that allows us to modify the target trajectory taking into account nonlinearities and to avoid the chattering effect. Illustrative example is presented that deals with robotic-based milling of aluminum alloy

    Transparent Films Made of Highly Scattering Particles

    Get PDF
    Today, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration. Here, we address this strong scattering issue in films made of binary colloidal suspensions. In particular, we focus on raspberry-type polymeric particles made of a spherical polystyrene core decorated by small hemispherical domains of acrylate with an overall positive charge, which display an unusual stability against aggregation in aqueous solutions. Their solid films display a brilliant red color due to Bragg scattering but appear completely white on account of strong scattering otherwise. To suppress the scattering and induce transparency, we prepared films by hybridizing them with oppositely charged PS particles with a size similar to that of the bumps on the raspberries. We report that the smaller PS particles prevent raspberry particle aggregation in solid films and suppress scattering by decreasing the spatial variation of the refractive index inside the film. We believe that the results presented here provide a simple strategy to suppress strong scattering of larger particles to be used in optical coatings

    On the bistable zone of milling processes

    Get PDF
    A modal-based model of milling machine tools subjected to time-periodic nonlinear cutting forces is introduced. The model describes the phenomenon of bistability for certain cutting parameters. In engineering, these parameter domains are referred to as unsafe zones, where steady-state milling may switch to chatter for certain perturbations. In mathematical terms, these are the parameter domains where the periodic solution of the corresponding nonlinear, time-periodic delay differential equation is linearly stable, but its domain of attraction is limited due to the existence of an unstable quasi-periodic solution emerging from a secondary Hopf bifurcation. A semi-numerical method is presented to identify the borders of these bistable zones by tracking the motion of the milling tool edges as they might leave the surface of the workpiece during the cutting operation. This requires the tracking of unstable quasi-periodic solutions and the checking of their grazing to a time-periodic switching surface in the infinite-dimensional phase space. As the parameters of the linear structural behaviour of the tool/machine tool system can be obtained by means of standard modal testing, the developed numerical algorithm provides efficient support for the design of milling processes with quick estimates of those parameter domains where chatter can still appear in spite of setting the parameters into linearly stable domains

    Effectiveness of ranitidine bismuth citrate and proton pump inhibitor based triple therapies of Helicobacter pylori in Turkey

    Get PDF
    Background : Helicobacter pylori infection is the main cause of gastritis, gastroduodenal ulcer disease, MALT lymphoma, and adenocarcinoma of the stomach. The reported prevalence of H. pylori in the adult population in Turkey is 67.6%–81.3%. A national meta-analysis showed that the average H. pylori eradication rate with proton pump inhibitor-based triple regimens in Turkey had decreased from 84% in 1997 to 55.3% in 2004, suggesting a need to evaluate alternative regimens. Materials and methods : The study was a prospective, single-center trial with a parallel group design. After the selection procedure, consecutive out-patients were assigned to one of six study groups using random sampling numbers. All patients received amoxicillin 1,000 mg b.i.d. and clarithromycin 500 mg b.i.d. along with ranitidine bismuth citrate 400 mg b.i.d., or omeprazole 20 mg b.i.d., or lansoprazole 30 mg b.i.d., or rabeprazole 20 mg b.i.d., or pantoprazole 40 mg b.i.d., or esomeprazole 40 mg b.i.d. for 14 days. Results : When we look at the eradication rates of the treatment groups, only two groups (ranitidine bismuth citrate and rabeprazole groups) had eradication rates greater than 80%, both at intention to treat and per protocol analyses. The other four groups (omeprazole, lansoprazole, pantoprazole, and esomeprazole groups) showed statistically significant lower eradication rates both at intention to treat (between 57.6 and 66.7%) and per protocol (between 60.3 and 72.1%) analyses when compared with ranitidine bismuth citrate and rabeprazole groups (p<.05). Conclusion : Ranitidine bismuth citrate and/or rabeprazole based triple therapies must be preferred for the first-line treatment of H. pylori infection

    Conditions for the freezing phenomena of geometric measure of quantum discord for arbitrary two-qubit X states under non-dissipative dephasing noises

    Full text link
    We study the dynamics of geometric measure of quantum discord (GMQD) under the influences of two local phase damping noises. Consider the two qubits initially in arbitrary X-states, we find the necessary and sufficient conditions for which GMQD is unaffected for a finite period. It is further shown that such results also hold for the non-Markovian dephasing process.Comment: 4 pages, 2 figure
    corecore